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Problem Description

• (Convolutional) Sparse Coding considers a (convolution)
dictionary to represent a signal in the following form:

Dx
(
=
∑

m

dm ∗ xm

)
≈ s.

• It contains problems like (Convolutional) Basis Pursuit
DeNoising, (convolutional) elestic net, mask decoupling, etc.

• Most of problems can be formulated as

minimize
x ,y

f (x) + g(y)

subject to Ax = y

f and g are all proper, closed and convex.
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ADMM for Separable Problems

• Alternating Direction Method of Multipliers (ADMM) is good at
solving problem with separable structure.

• It considers augmented Lagrangian function

Lρ(x , y ,u) := f (x) + g(y) + ρuT (Ax − y) +
ρ

2
‖Ax − y‖22

• It follows the iteration:
xk+1 = argmin

x
Lρ(x , yk ,uk ),

yk+1 = argmin
y

Lρ(xk+1, y ,uk ),

uk+1 = uk + (Axk+1 − yk+1).

• ek+1
p = ‖Axk+1 − yk+1‖,ek+1

d = ‖ρAT (yk+1 − yk )‖ are primal
and dual residuals as stopping criteria.
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Motivation of Preconditioning
• Theoretically, ADMM converges at rate of O(1/k) and if f is

strongly convex w.r.t H � 0 and Lipschitz smooth w.r.t M � 0, it
converges at rate of O

(
(
√
τ

1+
√
τ
)k
)
, where

τ :=
λmax(AH−1AT )

λmin(AM−1AT )

• In particular, if M = H = I, τ = κ(AAT ). Empirically, the smaller τ
is, the better the perfomance of ADMM will get even in general
cases.

• The preconditioning is to find a diagonal positive matrix E so that
λmax(EAH−1AT E)
λmin(EAM−1AT E)

is minimized and to solve the equivalent problem

minimize
x ,y

f (x) + g(y)

subject to EAx = Ey
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Matrix Equilibration

• Matrix Equilibration is trying to minimize κ(A) for some matrix A
by using two diagonal positive matrices D and E such that
κ(DAE) < κ(A).

• Theorems shown in [6] guarantee that if ‖(DAE):,j‖ = α and
‖(DAE)i,:‖ = β for some α, β, the upper bound of κ(DAE) is
minimized.

• I consider two equilibration algorithms mentioned in [7]:
Sinkhorn-Knopp algorithm and Ruiz algorithm and a regularized
matrix-free algorithm proposed in [2].
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Numerical Experiments
• I compare the effectiveness of three algorithms on matrices

selected from The SuiteSparse Matrix Collection [1].
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Figure: Left: 628 by 628 sparse matrix indexed as 2561 with condition
number 7.9443e+4. Right: 625 by 1506 sparse matrix indexed as 653 with
condition number 5.1327e+5.
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Precondition on BPDN

• For non-convolutional type problem, e.g., BPDN

min
x

1
2
‖Dx − s‖22 + λ‖x‖1,

I use Ruiz algorithm to generate precondition matrix E for DT D,
i.e., reducing κ(EDT DE), and solve the equivalent problem

min
x ,y

1
2
‖Dx − s‖22 + λ‖y‖1

s.t. E−1x = E−1y
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A Simulation of BPDN
D ∈ R500×800 is generated randomly with κ(DT D) =5.9101e+18
and after precondition, κ(EDT DE) ≈ 1

3κ(D
T D).
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Figure: Residual comparison for different penalty parameters. LEFT:
Primal residual, RIGHT: Dual residual.
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Comparison of the Speedup
I test ADMM on a wide range of penalty parameter ρ ∈ [1e − 2,5e2]
and restrict ρ on an optimal range [0.5,5] to test the number of
steps both algorithms require to attain tolerance 5e − 4.
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Figure: The number of iterations required to attain tolerance.
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Precondition on CBPDN

• Set E1 = uIM and E2 = v ⊗ IM ∈ RmM×mM if each Di ∈ RM×M .
• Use matrix-free method to generate E1 and E2, and to solve the

equivalent problem

min
xi ,yi

1
2
‖

m∑
i=1

Dixi − s‖22 + λ‖y‖1

s.t. E−1
2 x = E−1

2 y ,

where x = [xT
1 , · · · , xT

m]T , y = [yT
1 , · · · , yT

m]T ∈ RmM .
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Speedup on CBPDN
I pick the 8× 8× 96 dictionary set in SPORCO [8] and the image is
’lena.png’ in grey scale.
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Figure: Residual comparison. LEFT: Primal residual, RIGHT: Dual
residual.
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Speedup on CBPDN

• The tolerance is set to 5e − 5, the vanilla ADMM iterates 781
steps to stop, while the preconditioned ADMM only needs 628
steps.

• The actually runtime is 734.8294s for the vanilla ADMM and
537.2272s for preconditioned one.

• The precondition will not increase the computational complexity
at each iteration.
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BPDN with Mask Decoupling

Compared with plain Basis Pursuit Denoising, BPDN with mask
decoupling is trying to deal with boundary issue using mask
W ∈ Rm, it is formulated as (1-d signal for example):

min
x

1
2
‖W ⊗ Dx − s‖2 + λ‖x‖1 (mask decoupling)

The implementation of ADMM follows:

min
x ,y0,y1

1
2
‖W ⊗ y1 − s‖2 + λ‖y0‖1︸ ︷︷ ︸

f (y0,y1)

+0(x)︸︷︷︸
g(x)

s.t.
[

I
D

]
x =

[
y0
y1

]
,

where D is dictionary, convolutional one or non-convolutional one.
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Precondition on BPDNMD

• The precondition matrix E is constructed such that

κ
(

E
[

I
D

] [
I DT

]
E
)

is minimized and solve the equivalent problem:

min
x ,y0,y1

1
2
‖W ⊗ y1 − s‖2 + λ‖y0‖1 s.t.E

[
I
D

]
x = E

[
y0
y1

]
.
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A Simulation on BPDNMD

• D ∈ R510×800 is randomly generated and on 1-d signal.
• For observed signal s ∈ R500, I add a 10-d zero vector to the end,

so sob ∈ R510. The mask w ∈ R510 marks the last 10 entries of
sob as 0.

• λ = 0.01.
• The stopping criterion is set to be ‖x − xoptimal‖ < 1e-3.
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A Simulation on BPDNMD
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Figure: Iterations required to attain ‖x − xoptimal‖ < 1e − 3.
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Convolutional BPDN with Mask Decoupling

• CBPDNMD is similar to BPDNMD except that the dictionary D is
replace by a set of convolutional type dictionaries, i.e.,

Dx =
m∑

i=1

Dixi

• Trying to find a γ such that

κ
([ I
γD

] [
I γDT

] )
is minimized.
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Speedup on CBPDNMD
I pick the 8× 8× 96 dictionary set in SPORCO [8] and the image is
’lena.png’ in grey scale.
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Figure: Residual comparison. LEFT: Primal residual, RIGHT: Dual
residual.
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Speedup on CBPDNMD

• The dual residual dominates the convergence of algorithm. The
precondition balances the decreasing rate of two residuals to
speed up ADMM.

• The tolerance is set to 1e − 3, the vanilla ADMM iterates 1355
steps to stop, while the preconditioned ADMM only needs 397
steps.

• The actually runtime is 4.4561e + 03s for the vanilla ADMM and
1.2520e + 03s for preconditioned one.
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Conclusion

• Precondition as a heuristic method is effective on some
(convolutional) sparse coding problems.

• Its performance is comparable with the prevailing residual
balancing method on mask decoupling problems.

• In cases where the residual balancing method fails, precondition
method is a good complement.
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Thank You!
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